Quarkonium Binding and Dissociation: The Spectral Analysis of the QGP

Helmut Satz

Universität Bielefeld, Germany

CERN, Geneva 1994 LBL, Berkeley 1994 ECT*, Trento 1995 INT, Seattle 1996 CFIF, Lisbon 1997 INT, Seattle 1998 JYFL, Jyväskylä 1999 BNL, New York 2000 NBI, Copenhagen 2001

Hard Probes 2006

Asilomar/California

Statistical QCD: \exists deconfinement transition, QGP

How to probe QGP?

- e-m signals (real or virtual photons)
- quarkonia ($Q\bar{Q}$ pairs)
- jets (fast partons)

Ultimate aim: ab initio calculation of in-medium behaviour of probe

Statistical QCD: \exists deconfinement transition, QGP

How to probe QGP?

- e-m signals (real or virtual photons)
- quarkonia ($Q\bar{Q}$ pairs)
- jets (fast partons)

Ultimate aim: ab initio calculation of in-medium behaviour of probe

High Energy Nuclear Collisions:

experimental study of deconfinement transition, QGP

Ultimate aim: show that experimental results confirm in-medium predictions of statistical QCD

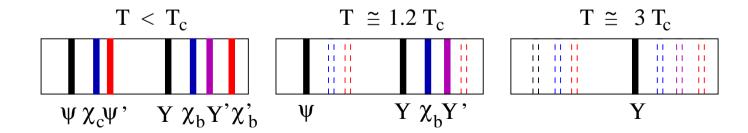
Statistical QCD: \exists deconfinement transition, QGP

How to probe QGP?

- e-m signals (real or virtual photons)
- quarkonia ($Q\bar{Q}$ pairs)
- jets (fast partons)

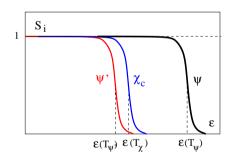
Ultimate aim: ab initio calculation of in-medium behaviour of probe

High Energy Nuclear Collisions:


experimental study of deconfinement transition, QGP

Ultimate aim: show that experimental results confirm in-medium predictions of statistical QCD

 \Rightarrow spectral analysis of quarkonia in QGP \Leftarrow


Theoretical basis:

- QGP consists of deconfined colour charges, hence \exists colour charge screening for $Q\bar{Q}$ probe
- screening radius $r_D(T)$ decreases with temperature T
- when $r_D(T)$ falls below binding radius r_i of $Q\bar{Q}$ state i, Q and \bar{Q} cannot bind, quarkonium i cannot exist
- quarkonium dissociation points T_i , through $r_D(T_i) = r_i$, specify temperature of QGP

Experimental basis:

- ullet measure quarkonium production in AA collisions as function of collision energy, centrality, A
- determine onset of (anomalous) suppression for the different quarkonium states
- correlate experimental onset points to thermodynamic variables (temperature, energy density)
- compare thresholds in survival probabilities S_i of states i to QCD predictions

⇒ direct comparison:experimental results vs. quantitative QCD predictions

In-Medium Behaviour of Quarkonia: Theory

Quarkonia:

heavy quark bound states stable under strong decay

heavy: charm $(m_c \simeq 1.3 \text{ GeV})$ or beauty $(m_b \simeq 4.7 \text{ GeV})$

stable: $M_{c\bar{c}} \leq 2M_D$ and $M_{b\bar{b}} \leq 2M_B$

 $\frac{\text{heavy}}{\text{quarks}} \neq \text{quarkonium spectroscopy via} \\ \text{non-relativistic potential theory}$

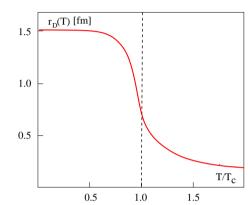
Schrödinger equation
$$\left\{2m_c - \frac{1}{m_c}\nabla^2 + V(r)\right\}\Phi_i(r) = M_i\Phi_i(r)$$

confining ("Cornell") potential
$$V(r) = \sigma r - \frac{\alpha}{r}$$

string tension $\sigma \simeq 0.2 \text{ GeV}^2$, gauge coupling $\alpha \simeq \pi/12$

 \Rightarrow quarkonium masses M_i and radii r_i

\Rightarrow good account of quarkonium spectroscopy


state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \text{ [GeV]}$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
$\Delta M \text{ [GeV]}$	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
radius [fm]	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

NB: error in mass determination ΔM is less than 1 %

Ground states:

tightly bound $\Delta E = 2M_{D,B} - M_0 \gg \Lambda_{QCD}$, small $r_0 \ll r_h$ What happens to binding in QGP? Colour screening \Rightarrow binding becomes weaker and of shorter range

when force range/screening radius become less than binding radius, Q and \bar{Q} cannot "see" each other \Rightarrow quarkonium dissociates

 \Rightarrow quarkonium dissociation points determine temperature, energy density of medium

How to calculate quarkonium dissociation temperatures?

• Model heavy quark potential V(r,T), solve Schrödinger equation:

Karsch et al. 1988 Digal et al. 2001

$$T_{J/\psi} \gtrsim T_c$$
, $T_{\chi} \& T_{\psi'} \lesssim T_c$

• Determine heavy quark potential V(r,T) in finite T lattice QCD, solve Schrödinger equation

Shuryak & Zahed 2004 Wong 2004, 2005 Alberico et al. 2005 Digal et al. 2005 Mocsy & Petreczky 2005, 2006

state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
T_d/T_c	2.10	1.16	1.12

• Calculate quarkonium spectrum in finite T lattice QCD

charmonia quenched:

Umeda et al. 2001 Asakawa & Hatsuda 2004 Datta et al. 2004 Iida et al. 2005

charmonia unquenched:

Morrin et al. 2005 bottomonia quenched

Datta et al. 2005 Velytsky et a. 2006

state
$$J/\psi(1S)$$
 $\chi_c(1P)$ $\psi'(2S)$ T_d/T_c > 2.0 < 1.1 ?

$$T_{\Upsilon} \gtrsim 2 T_c, T_{\chi_b} \lesssim 1.15 T_c$$
 [?]

 $\Rightarrow J/\psi$, Υ survive up to $T \ge 2$ $T_c \Rightarrow \epsilon_{J/\psi} \ge 25$ GeV/fm³ χ_c and ψ' melt near $T_c \Rightarrow \epsilon_{\psi',\chi} \simeq 0.5 - 2$ GeV/fm³

Caveat: survival, but modifications? radii, widths as f(T)? compare lattice & potential studies Mocsy & Petreczky 2006

What were the new theory inputs?

- colour singlet free energy in lattice QCD
- free → internal energy in potential models
- ullet direct finite T lattice calculations for quarkonia

What does this imply for quarkonium production as QGP probe in nuclear collisions?

In-Medium Behaviour of Quarkonia: Phenomenology

 J/ψ production in AA collisions:

- observed modifications due to
 - cold nuclear matter of target and projectile
 - secondary medium produced in collision
- ullet observed J/ψ production contains
 - directly produced 1S states
 - decay products from $\chi_c(1P)$ and $\psi'(2S)$ production

In-Medium Behaviour of Quarkonia: Phenomenology

 J/ψ production in AA collisions:

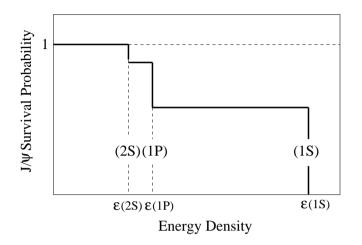
- observed modifications due to
 - cold nuclear matter of target and projectile
 - secondary medium produced in collision
- ullet observed J/ψ production contains
 - directly produced 1S states
 - decay products from $\chi_c(1P)$ and $\psi'(2S)$ production

Operational solution:

- identify effects due to cold nuclear matter by
 - -pA or dA studies
 - Glauber analysis in terms of σ_{abs}^i for $i=J/\psi$, χ_c , ψ' includes initial & final state effects: shadowing, parton energy loss, pre-resonance/resonance absorption

- for AA collisions, use σ_{abs}^i and Glauber analysis to
 - obtain prediction for normal J/ψ suppression
 - identify anomalous J/ψ suppression
 - parametrize through survival probability

$$S_i = \frac{(dN_i/dy)_{\text{exp}}}{(dN_i/dy)_{\text{Glauber}}}$$
 for quarkonium state i


- assume J/ψ origin in pA and AA same as in pp:
 - -60 % direct 1S, 30 % decay of 1P, 10 % decay of 2S
 - NB: could this be checked experimentally?

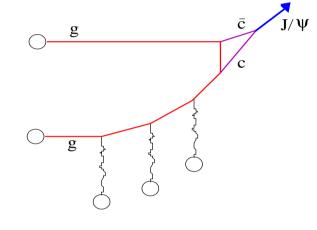
If AA collisions produce a fully equilibrated QGP:

- \Rightarrow sequential suppression of J/ψ , $\Upsilon \Leftarrow$
- ⇒ thresholds predicted by statistical QCD ←

Sequential J/ψ suppression:

Karsch & HS 1991 Gupta & HS 1992 Digal et al. 2001 Karsch, Kharzeev & HS 2005

If $J/\psi(1S)$ survives up to 2 $T_c \sim \epsilon \geq 25 \text{ GeV/fm}^3$:


- all anomalous suppression observed at SPS and RHIC due to dissociation of excited states χ_c and ψ'
- onset of anomalous suppression at $\epsilon(T_c) \simeq 1 \text{ GeV/fm}^3$
- J/ψ survival probability for central Au Au collisions at RHIC same as for central Pb Pb collisions at SPS

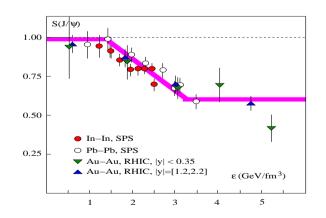
Cross-check: J/ψ transverse momentum behaviour

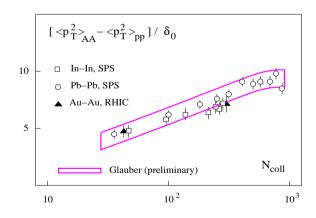
• initial state parton scattering causes p_T broadening of charmonia; random walk in pA collisions \rightarrow

$$\langle p_T^2 \rangle_{pA} = \langle p_T^2 \rangle_{pp} + N_c^A \delta_0$$

 N_c^A number of collisions before parton fusion to $c\bar{c}$ (Glauber, include σ_{abs})

- δ_0 kick per collision, determined in pA
- in AA collisions, initial state parton scatterings in target & projectile; random walk \rightarrow


$$\langle p_T^2 \rangle_{AA} = \langle p_T^2 \rangle_{pp} + N_c^{AA} \delta_0$$


 N_c^{AA} total number of collisions in target and projectile before $c\bar{c}$ fusion (again Glauber, include σ_{abs})

• If observed J/ψ in central AA collisions undisturbed $J/\psi(1S)$, centrality dependence of p_T broadening fully predicted by initial state parton scattering

Karsch, Kharzeev, HS 2005 Lourenço, Thews, HS - in progress

Expected Behaviour for SPS and RHIC Experiments:

Conclude: Present results are compatible with equilibrium QGP formation

NB: this is **NEW** and largely due to the following TH & EX changes

- finite T lattice QCD suggests (caveat: width) direct J/ψ suppression at energy densities beyond RHIC range; previous TH onset values much lower
- SPS In-In data suggest onset of anomalous suppression at $\epsilon \simeq 1 \text{ GeV/fm}^3$; previous EX onset values much higher, $2-2.5 \text{ GeV/fm}^3$
- within statistics, no further drop of survival rate below 50 60 %; second drop in SPS Pb Pb no longer claimed

Conclude: Present results are compatible with equilibrium QGP formation

NB: this is **NEW** and largely due to the following TH & EX changes

- finite T lattice QCD suggests (caveat: width) direct J/ψ suppression at energy densities beyond RHIC range; previous TH onset values much lower
- SPS In-In data suggest onset of anomalous suppression at $\epsilon \simeq 1 \text{ GeV/fm}^3$; previous EX onset values much higher, $2-2.5 \text{ GeV/fm}^3$
- within statistics, no further drop of survival rate below 50 60 %; second drop in SPS Pb-Pb no longer claimed

But: \exists alternative account of results?

Crucial aspect of QGP J/ψ suppression:

dissociated charmonia never "recreated" in hadronizing QGP, since thermal c/\bar{c} abundance negligible

what happens for non-thermal c/\bar{c} production?

Regeneration Scenario

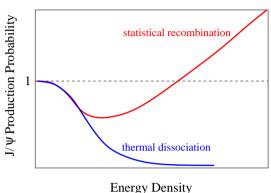
Basic Input:

Braun-Munzinger & Stachel 2001; Thews et al. 2001; Grandchamps and Rapp 2002

• $c\bar{c}$ production is hard process $\sim N_{coll}$, in contrast to u,d,s (soft hadron) production $\sim N_{part}$

[breaks down at high energy, parton saturation]

- increase collision energy \rightarrow increase charm content in produced system [check RHIC vs. SPS, D/h vs. thermal?]
- c or \bar{c} from a given nucleon-nucleon collision can at hadronization bind with charm constituents from different collisions ("off-diagonal" pairs)

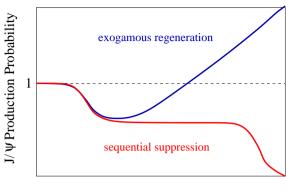

 \exists new exogamous charmonium production mechanism; c and \bar{c} in such charmonia have different parents, in contrast to introgamous production in pp

High energy \Rightarrow enhanced J/ψ production in AA re pp

When does this set in?

Present work assumes

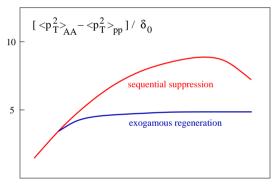
• direct J/ψ production strongly suppressed for $\epsilon \geq 3 \text{ GeV/fm}^3$ (in contrast to lattice results)



- statistical combination of all $c\bar{c}$ (with or without wave function correction)
- at RHIC energy, new exogamous J/ψ just compensate drop of direct introgamous rate; at LHC, off-diagonal production $\to J/\psi$ enhancement

How to distinguish between

- sequential suppression in equilibrium QGP and
- $-J/\psi$ regeneration by charm increase?

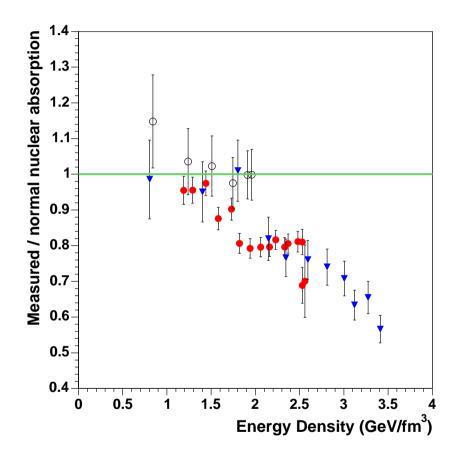

• overall J/ψ survival: suppression vs. enhancement at high energy densities

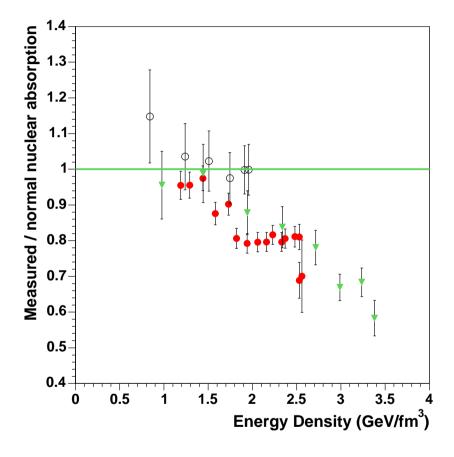
Energy Density

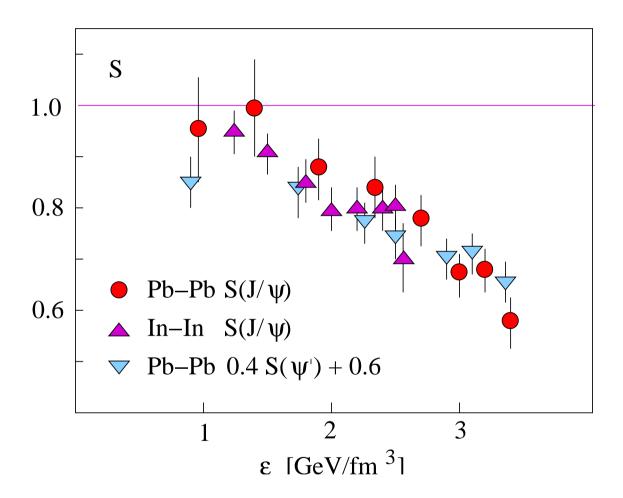
• p_T behaviour: initial state parton scattering vs. final state charm production

Karsch, Kharzeev & HS 2005 Mangano & Thews 2005

Energy Density


ullet in general, regeneration \rightarrow quarkonium momentum distributions \sim convolution of open charm momenta


Mangano & Thews 2005


• in statistical QCD, the spectral analysis of quarkonia provides a well-defined way to determine temperature and energy density of the QGP

- in statistical QCD, the spectral analysis of quarkonia provides a well-defined way to determine temperature and energy density of the QGP
- if nuclear collisions produce an equilibrium QGP, the study of quarkonium production provides a direct way to connect experiment and statistical QCD

- in statistical QCD, the spectral analysis of quarkonia provides a well-defined way to determine temperature and energy density of the QGP
- if nuclear collisions produce an equilibrium QGP, the study of quarkonium production provides a direct way to connect experiment and statistical QCD
- for a QGP with increasing charm content, off-diagonal quarkonium formation by statistical combination may destroy this connection

